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SOME BASIC CONCEPTS FOR MAGNET COIL DESIGN 

W. F. Gauster* 

In the United States and abroad there is intensive activity in thermonuclear research. 

A major part of this effort is directed toward containment, in strong magnetic fields, of 

plasma of the necessary high particle energies, corresponding to temperatures of hundreds 

of millions of degrees Kelvin.   Magnetic field design in thermonuclear research has already 

been developed to a relatively broad field of electrical engineering.     The purpose of this 

paper is to discuss some theorems which are of special interest for the design of large d-c 

magnet coils as used, for instance, in the DCX (Direct Current Experiment) thermonuclear 

research program of the Oak Ridge National Laboratory. 

I.   CYLINDRICAL MAGNET COILS WITH SQUARE ENDS AND 

UNIFORM CURRENT DENSITY 

The design of high power magnet coils is based on fundamental work by Fabry,     ' 

Cockcroft,5 and Bitter.6   It is advisable to summarize a few well-known points of this 

theory.   The simplest type of magnet coil is cylindrical with square ends and is designed 

for operation with uniform current density i (Fig. 1).   Fabry showed that the magnetic 

field strength at the coil center H. can be expressed by: 

fP\ 

where 

P = ohmic loss power, in watts, 

conducting cross section 

(1) 

A. = "space factor' 
total cross section including insulation 

*Oak Ridge National Laboratory, operated by Union Carbide Corporation for the U.S. Atomic 

Energy Commission. The author wishes to express his gratitude to Dr. J. P. Neal and Mr. T. F. 

Connolly for their helpful co-operation in editing this paper. 
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p = resistivity of the coil conductor, in ohm-cm, 

a. = inside radius of the coil, in cm. 

HQ is measured in oersteds, and BQ has the same numerical value in gauss (no ferromag- 

netic material is supposed to be in the magnetic field).   G is a dimensionless factor, the 

so-called "Fabry factor," which does not depend on the size but only on the shape of the 

coil. 

By introducing the ratios: 

(2) 

0 = — , 

(see Fig. 1), G can be expressed as a function of aand ß in an elementary way.       It is 

convenient to represent G   by a family of curves (see Fig. 2).     A "flat" maximum of 

G = 0.179  occurs for a=± 3.09, ß = 1.88. 

Fabry also used a "volume factor v," defined by: 

total coil volume 
(3) 

For instance, in the case of a cylindrical coil with square ends, v = 27i(a   - l)/3.   In 

Fig. 2, v = constant curves are shown by dashed lines.   Gmax corresponds to v - 101. 
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A somewhat smaller G can be achieved with a much smaller volume factor.    For instance, 

the DCX coils are designed with the following data: 8 

a = 1.53, 

0 = 0.618, 

v = 5.21, 

G = 0.128. 

Fabry gave a table showing, for volume factors between 1 and 10 , values of a and 

ß for which G assumes maximal values.9   The DCX coil is such a minimum-volume coil. 

It should be pointed out, however, that for many applications a minimum volume factor is 

not of special importance, since the whole field configuration produced by the magnet coil 

must be considered. 

II. FABRY FACTOR OF A LAYER COIL 

A coil shall be called a "layer coil" if it is wound in straight homogeneous layers; 

i.e., if current density i (measured in amp/cm2)/resistivity p, and space factor X are 

functions only of the distance from the axis of r.   If these quantities are functions of r 

and z, the coil will be called a "loop coil."   Figure 3 shows a layer coil which is sym- 

metrical to a plane through 0 perpendicular to the z-axis.   In the following, a general ex- 

pression for the Fabry factor G will be derived for a symmetric layer coil where the 

strength HQ is referred to the coil center.   A similar expression can be found for an asym- 

metric layer coil, and HQ referred to any point at the axis (see Appendix II). 

A cylindrical current sheet with a radius r, the length 2z, and a thickness dr produces 

in the center the field strength: 

An An      z 
dti,. =— Xi cos d> dr = —Xi —dr   . 0     10 10      s 

Therefore, 

477   ra0        z 
H* = rJ   Kl!dr ■ (4) lu

     r=a.       * 

The power dissipated in the infinitesimal current sheet is: 

dP = pi2 dVc u = pXi2 dV = AnpXi2rz dr   . 

Therefore, 

p = An f"2  pXi2rz dr   . (5) 
r=a} 

Normalized (dimensionless) quantities, which are in general functions of r, are introduced 

in the following way: 

i  = —; p  = —; x  =—  . (6) 
zi Pi Ai 

The subscript 1 refers to the innermost layer where r = ay 



Equations 4 and 5 become: 

An /2     + + z 

k   i   -dr   , 
r=a s 

and 

P = 4„P,V1  f2  P+A+(Z
+)2 dr 

(4a) 

(5a) 

Eliminating i, from these equations, we obtain 

Hr 

IPX, 

Plal 
(7a) 

\Jna, 

f"2   v+,+ * A   i   — dr 

G =• 

/f^p + k + VYrzdr 
V   r=ai 

(layer coil)   . (7b) 

Equation 7b contains a.; however, G is dimensionless and therefore independent of the 

magnitude of a,. 

III.    FABRY FACTORS OF CYLINDRICAL COILS WITH TAPERED ENDS 

As an example of the application of Eqs. 7a and 7b, a cylindrical coil with tapered 

ends (see Fig. 4), constant space factor (A   = 1), and constant specific resistance 
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(p+= 1) will be considered.   The current density is also assumed to be constant, in- 

versely proportional to the radius r, or inversely proportional to r . 

a.   i   = 1 

3TT     / k a- 1 
(8) 

5   J\ + k2Jo?-\ 

The maximum value for G is 0.172, for an angle <£ = 45° (k = 1), and a= 2.7.   This 

is case 4 of Bitter's paper.6 

b. 
a 

+ 
i 
.+        ] 

,  (9) 
5 /I +k2 Va-1 

The maximum value for G is 0.201, again for an angle <f> = 45°, but for a= 4.5.   This 

is Bitter's case 5. 

2 

^ AT /El. (10, 
5 /l+*2V     a 

The maximum value for G is 0.250, for an angle <f> = 45°, and a approaching infinity. 

It seems that this case has not been discussed previously; however, as will be 

shown, it deserves interest because this current distribution yields the maximum 

G for a cylindrical layer coil with tapered ends. 

IV.   OPTIMUM CURRENT DENSITY DISTRIBUTION OF A LAYER COIL 

In the previous paragraph maximum values of G were considered which occur for 

special values of k and a, i.e., for special shapes of cylindrical coils with tapered ends. 

Another problem is to find for a coil of any definite shape a current density distribution 

i(r) at which G   becomes a maximum (optimum current density distribution).   Special cases 

of this problem were discussed by Maxwell,12 Fabry,13 and Bitter.6   Here a general law 

for the optimum current density distribution of a coil of known shape and a general ex- 

pression for the Fabry factor (optimum Fabry factor) which results in this case are de- 

rived.   For simplicity a symmetrical layer coil is supposed, and HQ is referred to the coil 

center.   The more general problem, to find optimum current density distribution and op- 

timum Fabry factor for a layer coil of any shape, can be solved in a similar way.   As 

shown in the Appendix I, a certain value of HQ (Eq. 4) can be produced with a minimum 

power P (Eq. 5) if the following relation is satisfied. 

prsi - p, a.s ■. i, = constant. (Ha) 



Thus 

1   fllsl 

+    rs 
(lib) 

That is to say:   a desired magnetic field strength in the center of a symmetrical layer 

coil is achieved with minimum power when the product of specific resistance, radial dis- 

tance of a layer from the axis, distance of the layer end-point from the coil center, and 

current density are constant. 

Substituting z+ from Eq. lib into Eq. 7b, we obtain the optimum Fabry factor: 

yJna-\     /fa2   ^      z 

dr  (layer coil). (12) 

Some examples will be discussed below. 

V. CURRENT DENSITY FACTOR J OF A LAYER COIL 

As shown above, the Fabry factor G is dimensionless and characteristic of a certain 

coil shape and the distribution of relative current density, space factor, and resistivity. 

The absolute value of HQ is found by multiplying G by a scaling factor: 

(see Eq. 7a).   A similar procedure may now be used to find the absolute value of the 

current density z'..   From Eq. 5a, 

Anpyky   J p+\ + (i + )2rz dr 

(13) 

This equation can be written as: 

Pl^lfll 
(14a) 

p   \   (i   ) rz dr 

(14b) 

The dimensionless factor / shall be called the "current density factor."   The absolute 

value of i. is found by multiplying / by a scaling factor: 

The analogy to the Fabry factor is obvious. 



la. 1 

TT 
ICa2   X+     z 
J        ——dr 

*    -1   P+ rs2 

Two special cases might be considered first. For a coil of any shape with constant 

resistivity, space factor, and current density, the current density factor becomes simply 

(see Eq. 3): 

/=—L  (p+ = A+=f+=l)   . (15) 
y/TT 

In this special case the current density factor is the reciprocal of the square root of the 

volume factor. 

For a symmetrical layer coil of any shape, operated with optimum current distribution 

(Eq. lib), the current density factor (Eq. 14b) becomes: 

/    ♦ = —    /— ' • (16) 

Or, considering Eq. 12: 

a\ 1 
/       =        (layer coil)   . (17) 
J°P*      10s,  G    , 1       opt 

When the Fabry factor of a symmetrical coil with optimum current distribution is known, 

the absolute values of the current densities can be found easily by Eqs. 17, 14a, and lib. 

For a coil section similar to that shown in Fig. 3, a^ = Sy and therefore 

/opt= —— (layer coil), a, =s,   . (17a) 
opt 

VI.    EXAMPLES OF LAYER COILS WITH OPTIMUM CURRENT 
DENSITY  DISTRIBUTION 

a.   Cylindrical Coil with Square Ends and Optimum Radial Current Distribution, 

p+=X+=l(seeFig. l).4b'6 

Equation lib becomes in this case: 

.+    ^JaJTb* 
(18) 

ryjb2- +r2 

and Eq. 12 yields: 

1       2n     a2(l+02) 
G      =—  /— In • (19) 



For a coil with a= 3, ß = 2, the Fabry factor is G       = 0.197.   From Eq. 17 the current 

density factor is: 

1 1 
/    # = = 0.226  . 

°Pt     10^0-197 

Equation lib yields for the current density at r = a2 = 3^,, 

*2S2 3^ 
z, = 0.206 z, 

It is interesting to compare these data with those for a cylindrical coil with square 

ends and constant current density and with the same a,, a, ß, p, and X.   The field 

strength at the coil center in both cases is the same.   Then the power ratio is (see Eq. 1): 

P      /G'\2     /0,179\2     nnnr 
0.825  . 

P'    \G )      \ 0.197., 

That is to say, 17.5% of the power can be saved by optimizing the current density distri- 

bution.   From Eq. 15: 

1 
/'=   —=0.100   . 

Therefore (see Eq. 14a), 

'l      ]yfP       JG'    0.226x0.179 
2.05 

i'}    j>jp    /'G    0.100x0.197 

The current density in the optimized coil at r = a. is 2.05 z.', and decreases to 2.05zj x 

0.206 = 0.424 i\ at r = a2. 

b.   Cylindrical Coil with Tapered Ends and Optimum Radial Current Distribution, 
p + =\+= l(see Fig. 4). 

Equation lib becomes in this case: 

„    2 

?-{-)   ■ (20) 

A cylindrical coil with tapered ends (resistivity and space factor constant) has a maximum 

Fabry factor when the current density is inversely proportional to the square of the dis- 

tance from the axis.   This is exactly the previously considered third example of Section 

III.   For k= 1 and a= 3, Eq. 10 yields GQpt = 0.204.   From Eq. 17,/opt = 0.346. 

From Eq. 8 it follows that for a cylindrical coil with tapered ends, with k = 1 and 

a= 3 but with constant current density, G'= 0.170.   With HQ the same in each coil, 

P     /0.170\2     nznr 
0.695   ; 

P'   V 0.204 



that is, 30.5% power can be saved by optimizing the current density distribution.   From 

Eq.  15, 

1 i 
/'=   =.      '       = 0,0958   . 

«JE (aJ - 1) 

Therefore, 

zl      0.346x0.170 
— =    =3.01   . 
i\     0.0458 x 0.204 

The current density in the optimized coil at r = a, is 3.05 i',   and decreases to  L of this 

value, i.e., to 0.334 z j at r = a,.   Whether the absolute value of the maximum current 

density is acceptable or not depends on the numerical value of the scaling factor, 

P}X}a] 

VII.   SHAPE OPTIMIZATION OF LAYER COILS 

Section IV dealt with finding the optimum current density distribution of a layer coil. 

Another problem is that of the optimum shape of a coil (i.e., where G is a maximum) when 

the current density distribution i{r) is known.   For simplicity, only symmetrical layer 

coils will be considered.   The case of an unsymmetrical layer coil is discussed in Ap- 

pendix II. 

It can be shown (see Appendix I) that the optimization condition in this case is: 

ps*i    p(r7 + z1)2ni 
    • (21) 

T r 

We consider the following special cases: 

+      • + a.   p   = i   = 1 (Constant Current Density) 

Using the coordinates s and <f> (see Fig. 3), we obtain for the contour curve of the 

coil the equation: 

s2 

constant. (22) 
sin cf> 

This case was considered by Fabry.        He found G = 0.18. ' ' max 

b.   p    = 1, i   - a./r (Current Density Inversely Proportional to the Distance from the Axis) 

The equation of the contour curve is: 

■ = constant. (23) 
s 

.   2 sin 

The Fabry factor is again near 0.18. 



c.   p   = 1, i = (a./r)   (Current Density Inversely Proportional to the Square of the Dis- 
tance from the Axis) 

In this case: 

<£ = constant = — . (24) 
4 

This layer coil is a coil with tapered ends, as considered in sections lllc and W\b.   It 

can be shown that this type of a layer coil represents the solution of the problem of 

finding the optimum Fabry factor when both shape and current density distribution are 

optimized simultaneously.   However, in this case the maximum current density is rela- 

tively very high, and this fact, combined with the difficulties of building such coils, 

seems to limit their practical application. 

VIII.    LOOP COILS 

As mentioned previously, a loop coil, in contrast to a layer coil, is one in which the 

quantities i, r, p, and A are functions of both coordinates r and z.   Loop coils have little 

practical importance (although a slightly higher G is attainable) since their design is dif- 

ficult.   However, some basic theorems concerning loop coils and some numerical examples 

may be of interest. 

Assume that a loop has an infinitesimally small cross sectional area dA, in the z-r 

plane, and that its location and radius is determined by the coordinates a and r (distance 

from the origin s =\Jz    + r ); then the magnetic field strength produced at the origin is: 

2rr     I      r .... 
H„ = —     I \ — idA   . 25 

When normalized with respect to an appropriately selected reference loop (indicated by 

the subscript 1), this equation becomes: 

2T7 r   . r2 . 
Hn = — Vi     /   k —i   dA (25a) 

The power dissipated is: 

or, normalized, 

P = 2n    f   pXri2 dA   , (26) 
JA 

P = 2rrp1XlZ-1    J^   P+X + r(i + )2dA   . (26a) 

Corresponding to Eqs. 7a and 7b we obtain now for a loop coil: 

H0 = G    /  , (27a) 

10 



2 
' dA 

JA s3 

' C  p+\ + r(i + )2dA 

G = jjj"     ,  (loop coil)   . (27b) 

For the current density factor we obtain (compare Eqs. 14a and 14b): 

i, = /   J -, (28a) 

\Jf7^ )2 dA 
(loop coil)   . (28b) 

J. C. Maxwell solved the problem of designing a galvanometer in which a given small 

electromotive force would produce the greatest possible deflection.12   In a more general 

way we can ask about the optimum current density distribution of a loop coil of any shape, 

for which p and A are known functions of z and r.   Reasoning along the lines which led to 

finding the optimum current density distribution of a layer coil (see Appendix I) leads to 

the following optimization condition of a loop coil (compare with Eqs.  11a and lib): 

ps i      p,s3.i, 
  = — = constant   , (29a) 

r, 

.+ _    1    A' 1       *? 
i 

p-   Tys"        p'   *'"*] + ,  Ji + sinci,     s2 (29b) 

Substituting this value in Eqs. 27b and 28b we obtain: 

\Ffra~, If A+  /si.. r  , 
Gopt=—f7^L^   //—(—)   dA   ; (31) 

sin 
/oPt= ^TT—-1 (l°°P coil)   . (32) opt      10G 

opt 

Equation 29b shows that the current density distribution does not depend on the shape 

of the cross sectional area, A, of the coil since the coordinates of the contour of the coil 

cross section do not appear in this equation.   A family of curves can be drawn to repre- 

sent the i = constant lines which yield a maximum G for any shape of coil cross section 

(see Fig. 5a).  From Eq. 31 it follows that GQpt assumes the highest values if the coil 

cross section A extends from points as close as possible to its axis of symmetry.   This 

is illustrated by the following examples of loop coils with optimized current density 

distribution. 

11 



a.   Spherical Coil (Inside Radius a,, Outside Radius av see Fig. 5b) 

A spherical coil is difficult to construct, since it must be built in two halves in order 

to provide access to the inner empty sphere.    In this case: 

2TT 

G°Pf     5 V   3     V      o. 

4b 

(33) 

For very large a the Fabry factor approaches the value 0.289. 

b.   Long Cylindrical Solenoid (Inside Radius ay Outside Radius a2) 

G       .Z^*/EI. (34) 
°Pf       20     V     a 

For very large a the Fabry factor approaches the value 0.272.     ' 

c.   Cylindrical Coil with Tapered Ends (Fig. 4) 

G, 
277       /l(^-^+-sin2^-Ti-n4^/—   • <35> 

'opt      10   V 4\2       /     2 16 

For </> = 7r/4:   

G    t = 0.262  \ h—~   ■ (35a) 
°Pf V     a 

This yields Gopt = 0.213 for a = 3. 

As shown in section Vlb a cylindrical layer coil of the same shape optimized in 

respect to current density distribution has a Fabry factor GQpt = 0.204, which is only 

slightly smaller.   The current density factor /    f/ however, increases noticeably from 

0.346 for the layer coil to 0.470 for the optimized loop coil.   This shows clearly the 

merely academic interest of this case. 

Finally the following theorem might be derived.   Consider a set of n loop coils of any 

cross sections (Fig. 6).   The optimized Fabry factor of the coil k is (Eq. 31): 

G4.P,-V - n -[—] dA ■ (36) 

The optimized Fabry factor of the whole loop arrangement is: 

S^ e„.^jr±M«.       <*•> 
The integration has to be performed over the total cross sectional area A, i.e., over all 

the incremental areas A..   Expressed in somewhat different notation: 

(37b) 

12 
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Figures 5a, 5b, and 6. 

Therefore, 

°°pt   _ v\ 
a,      ~   Zj 

Jk opt 

fe=l 

(38) 

The Fabry factor is increased by the addition of more coils to the set.    Its highest 

value is achieved when the whole available space is filled with windings.   This is in 

contrast to layer coils.    For these the Fabry factor decreases when a certain optimum 

winding space is exceeded. 

CONCLUSION 

1. General expressions for the Fabry factor of a "layer coil" (for which coil varia- 

bles depend on the distance r from the axis only), and for a "loop coil" (coil variables 

depend on r and on axial coordinate z) have been derived (Eq. 7b and 27b). These gen- 

eral forms are convenient for the computation of the Fabry factor of a coil of any shape 

and any distribution of current density, resistivity, and space factor. 

13 



2.   In order to produce a desired field strength HQ at any point on the axis, with the 

minimum power P, the following kinds of optimization are possible: 

a. The coil shape and the distribution of p and A. are known; the problem is to find 

the optimum current density distribution.   For symmetrical loop coils and layer 

coils with variable p and A general solutions have been found (Eq. lib and 29b). 

The following result is of particular interest:   A desired magnetic field strength 

in the center of a symmetrical layer coil is achieved with the minimum power 

when the product of resistivity p, radial distance rof a layer from the axis, dis- 

tance of the layer end point from the coil center s, and current density i is 

constant. 

b. The current density distribution of a layer coil is any known function i = i(r), 

likewise the distributions of p and A. are known; find the shape of the optimum 

coil.   A general solution has been found (Eq. 21).   Of particular interest is the 

current density distribution: 

v2 

2 = 1—1      I, 

In this case the optimum coil is cylindrical with tapered ends, 

c.   Simultaneously optimizing current density distribution and coil shape likewise 

leads to the cylindrical coil with tapered ends and current density inversely pro- 

portional to the square of the distance from the axis. 

3.   For any magnet coil, the current density, z',, in the innermost layer (or in the loop 

with smallest radius) can be represented by the product of a dimensionless factor, the 

"current density factor" /, and a scaling factor as follows: 

= /   J-z-j • <14a> p}\}a 

The analogy to the Fabry factor is obvious.   General expressions for the current density 

factors of layer and loop coils have been derived (Eq. 14b and 28b).   For a coil of any 

shape with constant resistivity, space factor;and current density, the current density fac- 

tor / is the reciprocal value of the square root of the volume factor (Eq. 15). 

4.   For coils with optimum current density distribution, simple general expressions 

for the Fabry factor G     x have been derived (Eq. 12 and 21).   The current density factor 
' opt 

of a layer coil becomes in this case: 

j _fj (layer coil), (17) 

°Pt       ^1   Gopt 

and that of a loop coil: 

/       =Ü^_ll_L (|00p coil)   . (32) 
opt 10      G    , 

opt 

14 



5.   The Fabry factor, optimized with respect to current density, of n loop coils, each 

having the optimized Fabry factors Gk       , is: 

opt       VA       « opt 
— =>.  • (38) 

Numerical examples illustrate the basic concepts and theorems mentioned above. 

APPENDIX I 

Bitter6 showed how to find the optimum current density distribution and the corre- 

sponding values of the Fabry factor of coils of known shape.   He did this by the method 

of indeterminate multipliers, and the same mathematical method shall be applied here to 

the optimization of the current density i(r) of a layer coil of any symmetrical shape and 

with any p(r) and X(r) distribution. 

From Eqs. 4 and 5, 

477    ra2       z ra2        , 
F[z'(r)] = H   + pP =      I \i — dr + ß 4n    I p\ilrzdr   , (a) 

10   Jr=ay 
S J~« 

ß being an arbitrary constant. 

=fll 

is satisfied if: 

Therefore: 

8F[z(r)] = 0 (b) 

477        Z 
 X—+ fi 877 p\irz = 0   . (c) 
10      s 

prsi = = constant = p,a,s .i.   . (d) 
2G> liii 

This is Eq. 11a. Note that \(r) does not occur in this optimization condition for i(r). 

The space factor A.(r), of course, influences the Fabry factor, as shown in Eq. 12. A 

similar calculation can be used to prove Eq. 21. 

APPENDIX II 

Equations for Unsymmetrical Layer Coils 

Figure 7 shows a layer coil with the z-axis as the axis of rotational symmetry.   The 

coil, however, is not symmetrical to any plane perpendicular to the z-axis (unsymmetrical 

layer coil).   Referring to Fig. 7, the abbreviation, 

cos <pu - cos <£| = i/r   , (e) 

is used.   The magnetic field strength at the point 0 assumes the form 

77   ra2 
W0=—    / hliidr   . (f) 

15 
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Unsymmetrical Layer Coil. 

Figure 7. 

This can be written in normalized form: 

77 ra2        + 
Hn- — \,i,    I X ibi   dr   . 

r-ay 

The ohmic power loss becomes 

P = 277    / pAr(2M -z,)*'2 rfr 

= 2TTPIX)Z-2     T   2   p+A+r(zM -2j)(Z
+)2rfr 

From these equations it follows that the Fabry factor 

f°2   k+^S dr 

<4V? v^ '(*,, -z,)(i,+)2rfr 

and the current density factor 

\/C A^(2|l--,)(02 ^r 

(g) 

(h) 

(i) 

16 



The current density distribution for which G is a maximum can be found by the method 

discussed in Appendix I.   The result is 

P(Z
M ~z|)' 

/' = constant   . (k) 

If we consider a coil cross section similar to that shown in Fig. 7, Eq. (k) applied to the 

point r = a    assumes the form 0/0, which evaluates to 

p(z     -z)r        pa
l 

i - —■—■—  z 

* sin3*/,, 
(I) 

or 

i   = !    . (m) 

sin3 <p}   (zM  - z,)rp + 

This value substituted in Eq. (i) and (j) leads to 

(n) 

(o) 
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